Menoufia University
Faculty of Engineering
Shebin El-Kom
Academic Year: 2016-2017
Department: Basic Eng. Sci.

Subject: Basic Topics in Algebra Code : BES 502
Time Allowed: 3 hours
Date: 31 /5/2017
Max Marks: 100

Answer all the following questions:

Q. 1 (A)Define the following: Vector space, Span, Basis, and Orthonormality.
(B) Classify tensors according to its order, and compare between symmetric and antisymmetric tensors. then Show that any tensor can be represented by a linear combination of symmetric and anti-symmetric parts.
(C) Expand the equations: $A_{i j} x_{i} x_{j}(i, j=1,2,3)$
(D) State the definition of a group, then show that each following set or subset forms a group or not:

1. The subset $\{1,-1, i,-i\}$ of the complex numbers under complex multiplication.
2. The set of even integers under addition.
3. The set of odd integers under addition.
4. The set of integers under subtraction.
[Q. 1 (40 mark)]
(A) Apply DeMorgn's theorem to the following expression:
Q. 2

$$
\overline{A+B \bar{C}}+D(\overline{\mathbf{E}+\bar{F}})
$$

(B) Simplify $\overline{(A B+\bar{A} B+A \bar{B})}$.
(C) Reduce the combinational logic circuit in the following figure to a minimum form.

[Q. 2 (30 mark)]
Q. 3 (A) Prove that Eigenvectors for a real symmetric matrix which belong to different eigenvalues are necessarily orthogonal.
(B) Consider $A=\left(\begin{array}{cc}3 & -2 \\ 0 & 3 \\ 4 & 4\end{array}\right), B=\left(\begin{array}{l}3 \\ 5 \\ 4\end{array}\right)$ and $X=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$

1. Find the $Q R$ factorization of Matrix,
2. Solve for $\min \|A X-B\|$.
(C) Consider $A=\left(\begin{array}{ccc}1 & 6 & 2 \\ 2 & 12 & 5 \\ -1 & -3 & -1\end{array}\right), B=\left(\begin{array}{c}9 \\ -4 \\ 17\end{array}\right)$ and $X=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$
i) Show that A does not have an LU decomposition,
ii) Re-order the rows of A and find an $L U$ decomposition of the new matrix,
iii) Hence solve $A X=B$ by applying $L U$ decomposition.
[Q. 3 (30 mark)]

Good Luck

